S & C Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = 0 marks CREDIT one statement and a suitable explanation related to that (first) given statement (e.g. S3 + E3 but not S4 + E1)

DO NOT AWARD 2 marks for 2 statements or 2 explanations

S1 glucose is not the only substrate / there are other substrates;

'fats can (also) be respired' = E1 'fats can be respired as well as glucose' = S1 + E1

E1 named alternative substrate;

or

1.

S2 ATP is produced / energy is released;

DO NOT CREDIT energy produced / made / created

E2 (by) substrate level / oxidative, phosphorylation;

or

- **S3** ATP / energy, required;
- E3 (for) phosphorylation / glycolysis;

or

- **S4** is not a single step reaction / other steps involved / other products / other intermediates;
- **E4** named stage(s) / named intermediate compound(s);

Krebs cycle / ETC, happens = E4 'other stages such as link reaction are involved' = S4 + E4 e.g. pyruvate / acetyl CoA / acetate IGNORE NAD(H) / FAD(H) / ATP

or			
S5	enzymes are involved;		
E5	dehydrogenation / decarboxylation / oxidative phosphorylation / named (respiratory) enzyme;		
or			
S6	coenzymes / NAD, involved; DO NOT CREDIT NADP		
E6	oxidative phosphorylation / link reaction / Krebs cycle / glycolysis;		
or			
S7	glucose does not, combine / react, (directly) with oxygen;		
E7	(oxygen) used in oxidative phosphorylation / is final electron acceptor / is final hydrogen acceptor;		
			[2]
(i)	Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then $= 0$ marks		
	<u>glycol</u> ysis / <u>glycol</u> ytic pathway;		
	CREDIT phonetic spelling but must have 'glycol'	1	
(ii)	Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then $= 0$ marks		
	cytoplasm;		
	CREDIT cytosol		
	DO NOT CREDIT cytoplasm, in / of, mitochondrion	1	
(iii)	<i>Mark the first answer for each letter</i> . If the answer is correct and an additional answer is given that is incorrect or		

D ATP;

2.

E NAD; *ALLOW* oxidised NAD *DO NOT CREDIT* NADP / reduced NAD

contradicts the correct answer then = 0 mark

F pyruvate; ACCEPT pyruvic acid

[5]

3

	Award marks from labelled / annotated diagrams – but ensure that mp 2 only awarded if H clearly shown to be accepted by pyruvate
1	(pyruvate / F) converted to lactate;
	ACCEPT lactic acid DO NOT CREDIT if pyruvate \rightarrow ethanol in the animal is indicated/implied DO NOT CREDIT wrong reaction type (e.g. oxidation)
2	F / pyruvate, accepts hydrogen (atoms); ACCEPT pyruvic acid
•	DO NOT CREDIT hydrogen ions (unless also e^-) / molecule
3	hydrogen from, reduced NAD / reduced E; $ACCEPT NADH / NADH_2 / NADH + H^+$
4	(catalysed by) <u>lactate</u> dehydrogenase; for pyruvate \rightarrow lactate ACCEPT LDH
5	no, oxygen / O ₂ , to act as (final), hydrogen / electron, acceptor;
6	(so) link reaction / Krebs cycle / ETC, cannot take place;
	Needs a clear statement of not taking place CREDIT no, electron transport chain / electron carrier chain / chemiosmosis / oxidative phosphorylation
7	NAD / E, regenerated / recycled / able to be re-used; <i>IGNORE</i> reduced NAD, oxidised / reoxidised (as this does not give the idea of reusing it)
8	allows glycolysis to continue / pyruvate continues to be made; Needs a clear statement
9	<pre>limited / small amount of / some, ATP can be produced; CREDIT 1 ATP (per pyruvate) / 2 ATP (rather than 28-38 per glucose) / only substrate level phosphorylation IGNORE 'enough ATP for'</pre>

[5]

PMT

4. physical (probably from diagrams)

3.

1 large nostrils (open) to take in air;

ACCEPT oxygen

2 (when submerged) nostrils close / nose closes, to, keep air in / stop air from escaping;

ACCEPT oxygen IGNORE ref to keeping water out

3 lungs / airways, have high (vital) capacity;

ACCEPT deep / barrel / large, chest IGNORE big lungs CREDIT large lung volume / takes in large volume of oxygen / larger numbers of alveoli / larger (exchange) surface area / increased number of capillaries

links to respiration

- 4 *idea that* seal, has low(er) metabolic rate / has low(er) respiratory rate / has low(er) energy requirements / uses (relatively) little ATP;
 - e.g. (streamlined, less resistance so) uses less energy
 - (insulated so retain heat so) uses less energy
 - (buoyant so) less energy required
 - (small flippers so less surface area of extremity so loses less heat so) uses less energy
- 5 able to respire anaerobically for a long time / more glycolysis; *'anaerobic' needs time ref*
- 6 large supplies of NAD (to accept H);
- 7 (this) prevents, build-up of lactate / lowering of pH; *ACCEPT lactic acid*
- 8 *idea that* (seal) tolerates lactate / removes lactate quickly; ACCEPT lactic acid
- 9 *idea that* (seal) tolerates high CO₂ concentration;
- 10 *idea that* (seal) tolerates low pH / has **more** pH buffers;

synoptic / inference

11 *idea that* blood diverted from certain regions / certain regions have reduced metabolic activity;

DO NOT CREDIT zero respiration rate

- 12 *idea that* has plenty of, haemoglobin / red blood cells / myoglobin (as oxygen source);
- 13 *idea that* haemoglobin has a higher affinity for oxygen / dissociates less readily / dissociation curve shifted to **left**;

5.	no photophosphorylation; no ATP produced; no reduced NADP produced; no Calvin cycle / no light-independent stage; no GP to TP / no TP to RuBP; no fixation of carbon dioxide;						
	AVP	÷ .	organic molecules / named molecules ophic nutrition stops				
		ref to no respirator	ry substrate	max 3	[3]		
6.	(i)		ic respiration / reduction of pyruvate; rebs cycle <u>and</u> oxidative phosphorylation / chain;	3			
	(ii)	C; allow ecf from (i)		1			
	(iii)	A; allow ecf from (i)		1	[5]		
7.	(i)	(when cyanide absent) co glucose/pyruvate to prod	omplete homogenate can fully respire the luce carbon dioxide;				
		some carbon dioxide pro	 b), pyruvate does not enter the mitochondria; b) duced when pyruvate is converted to ethanal; c) / pyruvate is incomplete; 				
		ref. to anaerobic respirat	ion;	max 3			
	(ii)	pyruvate is end product of pyruvate can enter mitoc carbon dioxide produced by, decarboxylation / dec	hondria; I in the Krebs cycle and link reaction;				
		glucose cannot enter the	mitochondria;				
		AVP; further detail e.g.	no carriers for glucose in mitochondrial membranes glycolytic enzymes not found in mitochondria portion (of homogenate) glycolytic enzymes found in, cytoplasm / cytosol	max 3			

	(iii)	ethar does	vate is converted to ethanal in cytoplasm; nal is converted to ethanol; not involve, cytochromoes / ETC / oxidative phosphorylation; mes in cytoplasm not inhibited by cyanide;	max 3	[9]
8.	(i)	a bio energ	logical molecule that can be broken down in respiration to release	1	
	(ii)	awar 55/77 0.7 /		2	
	(iii)	1.0;		1	[4]
9.	ref. te leave repea calcu	o equil e for su m ats and	assium hydroxide / soda lime; libration / use syringe to set manometer fluid (level); litable length of time (minimum 20 minutes) and leasure distance moved by fluid; calculate mean; blume of oxygen taken up per minute; ref to set-up of control tube (e.g. same mass of beads as of fungus) or (same volume of inert substance as substance A) detail of how to calculate volume of oxygen (by multiplying distance moved by fluid in capillary by $2\pi r$)	max 4	[4]
10.	(a)	(i) (ii)	removal of, carbon dioxide/carboxyl group; removal of hydrogen; R <i>H</i> ₂ / <i>hydrogen molecules/hydrogen ions</i> A <i>H</i> /21 P and Q;	H 2 1	
	(b)	1;		1	
	(c)	(i)	3; 1;	2	

		(ii) 1 2 3 4 5 6 7 8 9 10 11	<u>inner</u> mitochondrial membrane/cristae; ref to (NADH) dehydrogenase; hydrogen split into protons and electrons; ref to, electron carriers/ETC/cytochromes; energy released from electrons; ref to protons pumped across membrane; protons accumulate in intermembranal space; proton gradient/pH gradient/H ⁺ gradient; protons pass through ATPase; A <i>ATPsynthase/</i> <i>ATP synthetase/stalked particle</i> ref. to oxygen (final) hydrogen/electron acceptor; formation of water;	max 4	
	(d)	ref to (β) - <u>o</u> NAD used NAD is, lin fats formed	cids, not <u>respired;</u> <u>xidation</u> (of fatty acids) requires NAD; in breakdown of alcohol; niting/in short supply/AW; from fatty acids plus glycerol; Further detail of alcohol/fat metabolism	max 3	[13]
11.	(i)	for germina for growth/	urce of/provides/to give, energy; ation; /protein synthesis/spindle formation/organelle replication/ A replication/active transport/cell division/other named function;	2 max	
	(ii)	compared t 39 kJ g^{-1} ; higher prop advantage f	rgy density/release twice as much energy per, g/unit mass; o, glucose/protein; portion of, hydrogen atoms/carbon-hydrogen bonds; for dispersal/named advantage; ref to coenzyme A formation	2 max	[4]

12. *heat loss*

- 1 body/blood, temperature rises;
- 2 may affect/denature, enzymes/proteins;
- 3 panting cools body;
- 4 ref. evaporative cooling;

fate of lactate

- 5 (high) lactate concentration needs to be reduced;
- 6 due to anaerobic respiration;
- 7 panting provides extra oxygen/ref. oxygen debt;
- 8 lactate oxidized to pyruvate;

respiratory gases

- 9 myoglobin would be reoxygenated;
- 10 haemoglobin would be reoxygenated;
- 11 ATP/CP, resynthesised in muscle tissue;
- 12 removal of extra carbon dioxide;

[4]

4 max

13.	(a)	for, flying/hovering/beating wings; muscle activity/AW; ref. ATP/respiration; AVP; e.g. explanation of energy demand of flight					
		small size qualified; e.g. increases heat loss/ ref. large surface area to volume ratio					
		homeothermic qualified;					
		migration qualified;					
		feather growth qualified; e.g. ref. mitosis/protein synthesis	max 4				
	(b)	<i>description</i>D1 high(est) incidence of torpor/AW;D2 low(est) oxygen consumption/AW;					
		D3 high(est) body mass/AW;					
		D4 data quote; 3 ma	x				
		 explanation E1 less food used; E2 (for) less respiration/lower BMR/lower body temperature; E3 more food stored; E4 as fat; E5 (food store/fat) for, migration/flight; 	max 4				
	(c)	flying, easier/uses less energy (with incomplete feathers if mass low); can, escape predators/find food, (by flying); food used for feather growth; therefore, fat stores used/less food stored;					
		incomplete/missing feathers may reduce body mass;	max 2				

	(d)	yes (autumn) high(est) mass birds have low(est) oxygen consumption; (spring) low(est) mass birds have high(est) oxygen consumption; data quote mass plus O ₂ consumption; only generate heat in proportion to (small) mass; but lose it in proportion to (large) surface area; homeothermic/small birds find it hard to keep warm;	max 3	[13]
14.	(a)	cut/damage, breaks tonoplast/opens vacuole/mixes enzyme and precursor/ AW; enzyme-substrate collisions/AW; (enzyme-substrate complex) releases, smell/volatile chemicals;	3	
	(b)	less precursor chemical; due to, herbivore/fungal/bacterial damage; due to sulphur recycling; due to onion being older; used pyruvate for, link reaction/Krebs cycle/respiration; AVP;	max 2	
	(c)	 (i) identify mildest/AW; and breed together; detail cross-pollination; idea, repeat/many generations AW; <u>directional selection;</u> AVP; e.g. reference to frequency of <u>alleles</u> (ii) grow in low level of, sulphur/sulphate; 	max 3 1	
	(d)	method of quantifying onion strength/producing extracts of different concentration; method of measuring, rotting/antibiotic effect of onion extract; replicates/mean; ref. control variable or example; ref. fungi/bacteria; AVP; e.g. reference to timescale AVP; e.g. second controlled variable	max 3	[12]

15. accept labelled sketch diagram for marking points below

nitrogenous base / purine; adenine; pentose / 5 carbon, sugar; ribose; <u>three</u>, phosphate groups / Pi; **R** phosphate molecule phosphorylated nucleotide;

A adenosine as an alternative to adenine plus ribose

16. 1 NAD / FAD, involved in respiration;

- 2 associated with, dehydrogenase enzymes / dehydrogenation;
- 3 2 molecules of NAD (reduced) in glycolysis;
- 4 link reaction producing 1 molecule of NAD (reduced);
- 5 Krebs cycle produces 3 NAD (reduced) (per turn of cycle);
- 6 detail of any one step in respiration where NAD (reduced) is produced;
- 7 Krebs cycle produces 1 FAD (reduced) (per turn of cycle);
- 8 carriers / transfers, hydrogen to, inner mitochondrial membrane / cristae / cytochromes / ETC;
- 9 mitochondrial shuttle (bringing NAD reduced from glycolysis into matrix);
- 10 NADP involved in photosynthesis;
- 11 produced in non-cyclic (photo)phosphorylation;
- 12 hydrogen comes from, water / photolysis;
- 13 (used in) Calvin cycle / light independent stage;
- 14 GP to TP step;
- 15 AVP; e.g. NADP involved in transporting hydrogen from grana to stroma
- 16 AVP; e.g. hydrogen split into electrons and protons at ETC

credit annotated diagrams

QWC - clear, well organised using specialist terms;

award QWC mark if three of the following are usedphotophosphorylationcristaeglycolysisphotolysisCalvin cyclelink reactionKrebs cycledehydrogenase / dehydrogenation

[8]

4 max

7 max

1

[4]

17.	1 2 3 4 5 6 7 8 9	ref te ener prote creat moti prote throu	<pre>absorbed by, pigment / bacteriorhodopsin / protein ; o electron carriers / change in shape of bacteriorhodopsin ; gy released from electrons ; R produced / created / made ons into cell wall ; te, proton gradient / electrochemical gradient / pH gradient / proton ve force ; ons, diffuse / move down gradient ; ugh, ATP synth(et)ase complex / stalked particles ; A ATPase P formed from) ADP + P(i) ; P; e.g. ref to chemiosmosis, ref to energy transducing membrane, ref to redox reactions.</pre>	4 max	[4]
18.	A; C; C;				
	С, В;				[4]
19.	need to fo lipid	s supp rm red s have	ative phosphorylation and ATP production ; ly of hydrogen ; luced, NAD / FAD ; more, hydrogen / hydrogen – carbon bonds ; l coenzyme A generated / more 'turns' of Krebs cycle ;	2 max	[2]
20.	ETC <u>less</u> food had t	still for ATP for not er to resp	nol in body ; unctioning ; ormed in respiration ; nough to meet metabolic demands of body / AW ; ire, body tissues / food stores ; heat production increasing metabolic rate	3 max	[3]
21.	(a)		d attracting a mate of a different species ; <i>ora</i> reproductive isolation ;	1 max	
	(b)	(i) (ii)	diffusion ; so that they do not receive oxygen constantly ; there are mitochondria between them and the cell surface ;	1 1 max	

(c) mitochondria / aerobic respiration / oxidative phosphorylation, inhibited

	only briefly ; oxygen concentration decreases again ; preventing, action of luciferase / production of light ; each flash short ; <i>ora</i> e.g. so not continuously lit AVP ;	2 max	
(d)	active transport ; A e.g. Na ⁺ /K ⁺ pump protein synthesis ; synthesis of named substance ; movement of organelles ; phosphorylation of glucose ; AVP ; ; ; e.g. transcription, translation, anabolic reaction		
	R respiration, DNA replication, chromosome movement, mitosis	3 max	
(e)	cells / membranes, damaged / disrupted ; nitrous oxide released ; mitochondria stop using oxygen ; oxygen, allows light production / reaches light-producing organelles ; in unlimited quantities / continuously, so light is brighter ; respiration / oxidative phosphorylation, ceases ;		
	no more, ATP / NADH ₂ ; luciferin, synthesis / regeneration, stops; AVP;	3 max	
(f)	live bacteria, respire / produce ATP ; ora	1	
(g)	<u>mRNA</u> (coding for luciferase) ; A DNA	1	[13]

PMT

22.	(i)	palisade (mesophyll) ; spongy (mesophyll) ;	
		mesophyll / chlorenchyma – 1 mark	2
	(ii)	1.7, 3.1, 4.0, 4.7, 4.9, 5.0;	1
	(iii)	selection of two temperatures 10 °C apart ;	
		<i>respiration</i> ref to release of carbon dioxide (in dark is measure of respiration); state two figures very close to value of 2, therefore supports; (all steps in) respiration enzyme catalysed;	
		<pre>photosynthesis data quotes must be from true rate of photosynthesis only value between 5 °C and 15 °C is close ; photosynthesis does not support as (other) values not near 2 ;</pre>	4 max
	(iv)	light intensity limiting factor ; low rate photosynthesis ; rate respiration increases at higher temperatures ; rate respiration, close to / exceeds, rate of photosynthesis ; A ora net primary productivity is lower / sugars broken down more quickly than formed ;	3 max

- decomposition / decay / rotting (of grass) ;
 (microbial) respiration ;
 (releases) heat ; 23. 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - temperature figures ; uses up oxygen / aerobic ; oxygen figures ; produces carbon dioxide ; carbon dioxide figures ; 7
 - 8
 - grass cuttings provide insulation ; 9
 - 10 AVP;

5 max

[5]

[10]

PMT

24.	(a)	1 2 3 4 5 6 7 8 9	<pre>rate of respiration can equal rate of photosynthesis / CO₂ used = CO₂ produced / O₂ used = O₂ produced; ref to compensation point; mitochondria use oxygen; chloroplasts produce oxygen; mitochondria are always active / respiration continues independently of light; chloroplasts are inactive in dark / photosynthesis does not take place without light; oxygen released by, chloroplasts / photosynthesis, can be utilised by mitochondria / respiration; at high light intensities, chloroplasts produce more oxygen than the mitochondria consume; AVP; e.g. valid refs to CO₂ exchange</pre>	max 4
	(b)	in oxi	bhate ions are used to produce ATP; idative phosphorylation / Krebs cycle / chemiosmosis / electron transport / ATP synth(et)ase; leaves mitochondria;	max 2
	(c)	conce becau triose	er protein / transport protein / transmembrane protein involved; A ref to a specific channel entration of triose phosphate is higher in the chloroplast (than in the cytoplasm); use it is a product of, photosynthesis / light independent reaction / Calvin cycle; phosphate moves, down concentration gradient / from high to low concentration; not involved / no energy used;	max 2
	(d)	cytop free / have riboso circul AVP; R abs R ref	 re references to chloroplasts or mitochondria being cells, having lasm and reference to free ribosomes naked, DNA; A DNA not surrounded by, membrane / envelope an inner folded membrane / AW; omes, smaller than those in cytosol / similar in size to prokaryotic ribosomes; A ref to 70S and 80S lar DNA; A loop g.e.g. absence of introns sence of a nucleus from the chloroplast or mitochondrion to membranous organelles as chloroplasts and mitochondria mese organelles 	max 2

PMT

25. S;

R;

S;

 $\mathbf{A}-\text{correct}$ names instead of letters

26. FAD / NAD; A reduced FAD / reduced NAD / AW

[3]

[1]